Roland Schmehl
27 September 2024
Relevant literature sources are Loyd (1980) and Diehl (2013).
Ambient wind velocity
\[\vvw, \quad {\rm m/s}\]
Air density
\[\rho, \quad {\rm kg/m}^3\]
Dynamic wind pressure
\[q = \frac{1}{2}\rho\vw^2, \quad {\rm
N/m}^2\]
Wind power density
\[\Pw = \frac{1}{2}\rho\vw^3, \quad {\rm
W/m}^2\]
Gravitational acceleration
\[\vec{g}, \quad {\rm m/s}^2\]
More information Oehler and Schmehl (2019)
Flat wing surface area (unrolled)
Wing planform area (projected)
\[S, \quad {\rm m}^2\]
Wing span
\[b, \quad {\rm m}\]
Wing maximum chord
\[\cmax, \quad {\rm m}\]
Wing side area (projected)
Airfoil geometry
Kite mass
\[\mk, \quad {\rm kg}\]
Friedl (2015)
Kite velocity
\[\vvk\]
Apparent wind velocity
\[\vva = \vvw - \vvk\]
Resultant aerodynamic force
\[\Fa = \frac{1}{2}\rho\CR S
\va^2\]
Resultant aerodynamic force can be decomposed into lift and drag
force
\[\vFa = \vec{L} + \vec{D}\]
Drag force component is defined as
\[\vec{D} \parallel \vva\]
Lift force component is defined as
\[\vec{L} \perp \vva\]
Aerodynamic side force \(\vFas \sim \betas\) neglected for performance modeling.
\[\begin{align} \vec{L} & = \frac{1}{2}\rho\CL S \va^2\\ \vec{D} & = \frac{1}{2}\rho\CD S \va^2 \end{align}\]
Wind tunnel measurement
Computational Fluid Dynamics
Jelle Poland
Jelle Poland
Airfoil
Rotating cylinder
Start from the minimal
setup, the untethered wing.
Step by step add physical
components,
add motion components,
and compute forces acting on the system.
Analytic
modelling framework
\[\zeta = \frac{P}{\Pw S} =
\CR\left[1+\left(\frac{L}{D}\right)^2\right] f \left(\cos\beta\cos\phi -
f\right)^2\]
TobiWanKenobi/Wikipedia
Kite velocity
\[\vvk = \vvkx + \vvkz = \const\]
Glide ratio
\[E = \frac{\vkx}{\vkz} =
\frac{1}{\tan\gamma} \quad \to \quad \text{glide angle }
\gamma\]
Apparent wind
velocity
\[\vva = \vvw -\vvk = -\vvk, \quad
\text{with} \qquad \vw=0\]
Steady force
equilibrium
\[m\vg + \vFa = 0\]
Geometric similarity
of kinematic and force triangles because \(\vvkz \parallel \vFa\) and \(\vvk \parallel \vec{D}\)
\[E = \frac{\vkx}{\vkz} =
\frac{L}{D}\]
If two parallel lines cut through a pair of intersecting straight lines, the generated triangles are geometrically similar (below a variant with right-angled triangles).
Effect of additional wind velocity \(\vw > 0\)
If wing flies against wind, glide angle \(\gamma\) gets steeper
Apparent wind
velocity
\[\begin{align}
\vva & = \vvw -\vvk\\
\vax & = \vw -\vkx \\
\vaz & = -\vkz
\end{align}\]
Geometric similarity
of kinematic and force triangles
\[E = \frac{\vax}{\vaz} =
\frac{L}{D}\]
Application in
AWE:
limiting case of retraction in pumping cycle with
vanishing tether tension.
Library of Congress / NPS.gov
Dan Tate, left, and Wilbur Wright, right, flying
the 1902 glider as a kite, on 19 September 1902.
Kite velocity
\[\vvk = 0\]
Apparent wind
velocity
\[\vva = \vvw - \vvk =
\vvw\]
Static force
equilibrium
\[\vFt + \vFa = 0\]
\[\Ft = \Fa = \sqrt{L^2 + D^2}\]
\[\begin{align} \tan\beta & = \frac{L}{D} \\ \beta & = \arctan\frac{L}{D} \end{align}\]
\[\lim_{\frac{L}{D}\to\infty} \beta = \frac{\pi}{2}\]
Static force equilibrium
\[\vFt + \vFa + m\vg = 0\]
\[\Ft = \sqrt{\left(L-mg\right)^2 + D^2}\]
\[\begin{align} \tan\beta & = \frac{L-mg}{D} \\ & = \frac{L}{D}\left(1-\frac{mg}{L}\right)\\ & = \frac{L}{D}\left(1-\frac{1}{\mu}\right), \quad \text{with} \qquad \mu=\frac{\rho \CL S \vwexp2}{2 m g} \end{align}\]
Limiting cases
\[\begin{align}
mg=0\,~ (\mu\to\infty) & \quad \to \quad
\beta=\arctan{\frac{L}{D}}\\
mg=L ~ (\mu=1)\quad & \quad \to \quad \beta=0
\end{align}\]
Reeling factor \(\to\) degree of freedom
\[f = \frac{\vkx}{\vw}\]
Tangential velocity
factor
\[\lambda =
\frac{\vky}{\vw}\]
Apparent wind
velocity
\(\begin{aligned}
\vva & = \vvw - \vvk \\
& = \left( \vw - \vkx \right)\vex + \left( - \vky
\right)\vey
\end{aligned}\)
Geometric similarity
of velocity and force triangles
\[\frac{L}{D} = \frac{\vky}{\vw-\vkx} \qquad
\to \qquad \frac{L}{D}\left( \vw - \vkx \right) = \vky \\
\lambda = \frac{L}{D} \left( 1-f \right) = E \left( 1-f \right) \quad
\to \quad \text{not a degree of freedom!}\]
Apparent wind velocity
\(\begin{aligned}
\vaexp{2} & = \left( \vw-\vkx \right)^2 + \vky^2 \qquad \to
\qquad \left(\frac{\va}{\vw}\right)^2 = \left( 1-f \right)^2 +
\lambda^2\\
\frac{\va}{\vw} & = \left( 1-f \right) \sqrt{1+E^2}
\end{aligned}\)
Aerodynamic
force
\[\Fa = \frac{1}{2}\rho S \CR \vaexp{2} =
\frac{1}{2}\rho S \CL \sqrt{1+\frac{1}{E^2}}
\left(\frac{\va}{\vw}\right)^2 \vwexp{2}\]
Non-dimensional tether
force
\[\frac{\Ft}{qS} = \CL \sqrt{1+\frac{1}{E^2}}
\left( 1-f \right)^2 \left( 1+E^2 \right), \quad \text{with} \qquad
q=\frac{1}{2}\rho\vwexp{2}\]
Power harvesting
factor
\[\zeta = \frac{P}{\Pw S} = C_L
\sqrt{1+\frac{1}{E^2}} f \left( 1-f \right)^2 \left( 1+E^2 \right),
\quad \text{with} \qquad \Pw =
\frac{1}{2}\rho\vwexp{3}\]
Maximize by extereme value analysis
\(f \left( 1-f \right)^2\)
Optimal reeling
factor
\[\fopt=\frac{1}{3}\]
Maximum harvesting
factor
\[\zetaopt = \frac{4}{27} C_L
\sqrt{1+\frac{1}{E^2}}\left( 1+E^2 \right)\]
Maximum harvesting
factor for high-performance kites
\[\lim_{E\to\infty} \zetaopt = \frac{4}{27}
C_LE^2\]
Reeling factor \(\to\) degree of freedom
\[f = \frac{\vk}{\vw}\]
Apparent wind
velocity
\[\vva = \vvw - \vvk\]
Decomposition of kite
velocity
\[\vvk = \vec{b} + \vec{c}\]
\[\vva = \vvw - \vec{b} - \vec{c}\]
\[\vvw = \vva + \vec{c} + \vec{b}\]
\[\vw^2 = \left( \va - c \right)^2 + b^2\quad
\text{(positive vector magnitudes!)}\] \[\frac{\va}{\vw} =
\sqrt{1-\left(\frac{b}{\vw}\right)^2} +
\frac{c}{\vw}\]
Displayed is the case for reel in with \(f<0\)
Geometric similarity
\[\frac{b}{\vk} = \frac{L}{\Fa} =
\frac{1}{\sqrt{1+\frac{1}{E^2}}}\] \[\frac{c}{\vk} = \frac{D}{\Fa} =
\frac{1}{\sqrt{1+E^2}}\]
Normalized to the wind speed
\[\frac{b}{\vw} =
-\frac{f}{\sqrt{1+\frac{1}{E^2}}}\] \[\frac{c}{\vw} =
-\frac{f}{\sqrt{1+E^2}}\]
Minus signs aacount for negative value of \(f\)
Displayed is the case for reel in with \(f<0\)
Apparent wind speed
\[\begin{align}
\frac{\va}{\vw} & = \sqrt{1 - \frac{f^2}{1 + \frac{1}{E^2}}} -
\frac{f}{\sqrt{1 + E^2}}, \\
& = \frac{\sqrt{1 + E^2\left( 1 - f^2 \right)} -
f}{\sqrt{1 + E^2}}
\end{align}\]
Non-dimensional tether force
\[\frac{\Ft}{qS} = \CL
\frac{\left[\sqrt{1+E^2(1-f^2)}-f\right]^2}{E\sqrt{1+E^2}}\]
Power harvesting factor
\[\zeta = \CL
\frac{f\left[\sqrt{1+E^2(1-f^2)}-f\right]^2}{E\sqrt{1+E^2}}\]
Displayed is the case for reel in with \(f<0\)
Elevation angle \(\to\) not a degree
of freedom
\[\cos\beta =
\frac{\sqrt{1+E^2(1-f^2)}+fE^2}{1+E^2}\]
Derivation of minimum reeling factor \(f_{\rm min}\)
Displayed is the case for reel in with \(f<0\)
The wind speed \(\vw\) describes the available energy
resource.
The lift-to-drag ratio \(E\) characterizes the specific kite
design.
For the ideal crosswind kite prescribe
the tether reeling speed \(\vt\) to calculate the achievable kite
crosswind speed \(\vkx\),
or
the kite crosswind speed \(\vkx\) to calculate the required tether
reeling speed \(\vt\).
For the non-maneuvering kite prescribe
the tether reeling speed \(\vt\) to calculate the achievable elevation
angle \(\beta\), or
the elevation angle \(\beta\) to calculate the required tether
reeling speed \(\vt\).