Airborne Wind Energy

Basic mechanics of crosswind kites

Roland Schmehl

26 September 2025

CC BY 4.0

Outline

Kitepower

Learning objectives

  • Derive a basic theory of tethered flight and energy harvesting with kites
  • Identify all relevant problem parameters
  • Introduce a consistent set of non-dimensional numbers
  • Illustrate idealized flight scenarios practical examples

Relevant literature sources are Loyd (1980) and Diehl (2013).

Definitions and assumptions

Ni Yan / AWESCO doctoral training network

Terminology

  • Velocity is a vector property.
  • Speed is a scalar property, the magnitude
    of the velocity vector.
  • A kite can be of fixed-wing of soft-wing type.


Terminology

  • Velocity is a vector property.
  • Speed is a scalar property, the magnitude
    of the velocity vector.
  • A kite can be of fixed-wing of soft-wing type.


Mathematical notation

  • Scalars are set in italic: \(a\), \(b\), \(\rho\), \(\phi\)
  • In digital resources, vectors are set in bold roman: \(\vec{v}\), \(\vec{L}\), \(\vec{D}\)
  • In handwritten resources, vectors are overset with an arrow: \(\overset{→}{v}\), \(\overset{→}{L}\), \(\overset{→}{D}\)
  • Units are set in roman: \(\rm m\), \(\rm kg\)
  • Mathematical functions are set in roman: \(\sin\), \(\cos\), \(\max\)
  • Product of scalars: \(a b\)
  • Scalar product of vectors: \(\vec{v}\cdot\vec{v} = v^2\)
  • Cross product of vectors: \(\vec{v} = \boldsymbol\omega\times\vec{r}\)
  • Cartesian unit vectors: \(\vex\), \(\vey\), \(\vez\)

Environmental properties

Ambient wind velocity
\[\vvw, \quad {\rm m/s}\]

Air density
\[\rho, \quad {\rm kg/m}^3\]

Dynamic wind pressure
\[q = \frac{1}{2}\rho\vw^2, \quad {\rm N/m}^2\]

Wind power density
\[\Pw = \frac{1}{2}\rho\vw^3, \quad {\rm W/m}^2\]

Gravitational acceleration
\[\vec{g}, \quad {\rm m/s}^2\]

Kite properties

Flat wing surface area (unrolled)

Wing planform area (projected)
\[S, \quad {\rm m}^2\]

Wing span
\[b, \quad {\rm m}\]

Wing side area (projected)

Wing maximum chord
\[\cmax, \quad {\rm m}\]

Airfoil geometry

Kite mass¹
\[\mk, \quad {\rm kg}\]

1 Often also just denoted as \(m\), without subscript.

Example: TU Delft V3 kite

Kite kinematics

Friedl (2015)

Kite kinematics

Kite velocity
\[\vvk\]

Apparent wind velocity
\[\vva = \vvw - \vvk\]

Resultant aerodynamic force
\[\Fa = \frac{1}{2}\rho\CR S \vaexp{2}, \quad \text{with} \quad \vaexp{2} = \vva\cdot\vva\]

Apparent wind velocity

Kite velocity
\[\vvk\]

Apparent wind velocity
\[\vva = \vvw - \vvk = \vvw + (- \vvk)\]



Relative flow

Aerodynamic forces

Resultant aerodynamic force can be decomposed into lift and drag force
\[\vFa = \vec{L} + \vec{D}\]

Drag force component is defined as
\[\vec{D} \parallel \vva\]

Lift force component is defined as
\[\vec{L} \perp \vva\]

Aerodynamic side force \(\vFas \sim \betas\) neglected for performance modeling.

\[\begin{align} \vec{L} & = \frac{1}{2}\rho\CL S \vaexp{2}\\ \vec{D} & = \frac{1}{2}\rho\CD S \vaexp{2} \end{align}\]

Determining aerodynamic coefficients

Wind tunnel measurement

  • Rigid scale model with 1.28 m span
  • Unloaded design shape
  • Variable angle of attack & side slip angle
  • Reynolds number lower than real kite

Computational Fluid Dynamics

  • CAD model before meshing
  • Unloaded design shape
  • Variable angle of attack & side slip angle
  • Uncertainty about captured physics

Aerodynamic characteristics

Aerodynamic lift devices

Airfoil

  • Full range of \(L/D\)
  • \(D\) can be minimised
  • Control by angle of attack

Rotating cylinder

  • Limited \(L/D\)
  • \(D\) can not be modified
  • Control by angular velocity

Tethered flight

  • Aerodynamic forces
  • Aerodynamic lift and drag

Approach

Start from the minimal setup, the untethered wing.
Step by step add physical components,
add motion components,
and compute forces acting on the system.

Analytic modelling framework
\[\zeta = \frac{P}{\Pw S} = \CR\left[1+\left(\frac{L}{D}\right)^2\right] f \left(\cos\beta\cos\phi - f\right)^2\]




Steady gliding flight

TobiWanKenobi/Wikipedia

Stagnant wind

Kite velocity
\[\vvk = \vvkx + \vvkz = \const\]

Glide ratio
\[E = \frac{\vkx}{\vkz} = \frac{1}{\tan\gamma} \quad \to \quad \text{glide angle } \gamma\]

Apparent wind velocity
\[\vva = \vvw -\vvk = -\vvk, \quad \text{with} \qquad \vw=0\]

Steady force equilibrium
\[m\vg + \vFa = 0\]

Geometric similarity of kinematic and force triangles because \(\vvkz \parallel \vFa\) and \(\vvk \parallel \vec{D}\)
\[E = \frac{\vkx}{\vkz} = \frac{L}{D}\]





Geometric similarity




Same shape but different sizes, in fact, different units (N vs m/s).

Uniform and constant wind

Effect of additional wind velocity \(\vw > 0\)

If wing flies against wind, glide angle \(\gamma\) gets steeper

Apparent wind velocity(TU Delft V3 kite)
\[\begin{align} \vva & = \vvw -\vvk\\ \vax & = \vw -\vkx \\ \vaz & = -\vkz \end{align}\]

Geometric similarity of kinematic and force triangles
\[E = \frac{\vax}{\vaz} = \frac{L}{D}\]

Application in AWE:
limiting case of retraction in pumping cycle with
vanishing tether tension.






Tethered static flight

Library of Congress / NPS.gov

Dan Tate, left, and Wilbur Wright, right, flying
the 1902 glider as a kite, on 19 September 1902.

Static massless kite

Kite velocity
\[\vvk = 0\]

Apparent wind velocity
\[\vva = \vvw - \vvk = \vvw\]

Static force equilibrium
\[\vFt + \vFa = 0\]

\[\Ft = \Fa = \sqrt{L^2 + D^2}\]

\[\begin{align} \tan\beta & = \frac{L}{D} \\ \beta & = \arctan\frac{L}{D} \end{align}\]

\[\lim_{\frac{L}{D}\to\infty} \beta = \frac{\pi}{2}\]




Effect of gravity

Static force equilibrium
\[\vFt + \vFa + m\vg = 0\]

\[\Ft = \sqrt{\left(L-mg\right)^2 + D^2}\]

\[\begin{align} \tan\beta & = \frac{L-mg}{D} \\ & = \frac{L}{D} \left[1-\frac{mg}{L}\right] \\ & = E\,\left[1-\frac{2mg}{\rho\CL S \vwexp2}\right] \end{align}\]

\[\begin{align} \phantom{\tan\beta} & = E\,\left[1-\frac{\color{red}{\frac{2mg}{\rho\CL S}}}{\vwexp2}\right] \end{align}\]

But what is the physical meaning of \(\color{red}{\frac{2mg}{\rho\CL S}}\)?

Static take-off limit

Generated lift just balances the effect of gravity:
\[\frac{1}{2}\rho\CL S \vwexp2=mg\]

Equivalent to \(\beta = 0\) (horizontal tether).

Solving force balance for \(\vw\) leads to wind speed at the static take-off limit:
\[\vw = \sqrt{\frac{2mg}{\rho\CL S}} = \vwsto\]

Definition identical to the stall speed \(\vstall\)
of an aircraft (Anderson 2016).

Effect of gravity

Static force equilibrium
\[\vFt + \vFa + m\vg = 0\]

\[\Ft = \sqrt{\left(L-mg\right)^2 + D^2}\]

\[\begin{align} \tan\beta & = \frac{L-mg}{D} \\ & = \frac{L}{D} \left[1-\frac{mg}{L}\right] \\ & = E\,\left[1-\frac{2mg}{\rho\CL S \vwexp2}\right]\\ & = E\,\left[1-\frac{\color{red}{\frac{2mg}{\rho\CL S}}}{\vwexp2}\right]\\ & = E\,\left[1-\left(\frac{\color{red}{\vwsto}}{\vw}\right)^2\right], \quad \text{with} ~ \vwsto = \sqrt{\frac{2mg}{\rho\CL S}} \end{align}\]

Static take-off limit wind speed


Kite \(S~\text{(m$^2$)}\) \(m~ \text{(kg)}\) \(\CLmax~\text{(-)}\) \(\vwsto~\text{(m/s)}\)
Ampyx AP2 3 35 1.5 11.3
Mozaero AP3 12 475 2.1 17.5
Makani MX2 54 1850 2 16.7
MegAWES 150.45 6885 1.9 19.8
TU Delft V3 19.75 22.8 1 4.3

Source: Joshi et al. (2024)

Ideal crosswind flight

TU Delft V3 kite flying on launch mast in 2012

Massless crosswind kite

Reeling factor \(\to\) degree of freedom
\[f = \frac{\vkx}{\vw}\]

Tangential velocity factor
\[\lambda = \frac{\vky}{\vw}\]

Apparent wind velocity
\(\begin{aligned} \vva & = \vvw - \vvk \\ & = \left( \vw - \vkx \right)\vex + \left( - \vky \right)\vey \end{aligned}\)

Geometric similarity of velocity and force triangles
\[\frac{L}{D} = \frac{\vky}{\vw-\vkx} \qquad \to \qquad \frac{L}{D}\left( \vw - \vkx \right) = \vky \\ \lambda = \frac{L}{D} \left( 1-f \right) = E \left( 1-f \right) \quad \to \quad \text{dependent variable, i.e. not a degree of freedom!}\]






Massless crosswind kite

Apparent wind velocity
\(\begin{aligned} \vaexp{2} & = \left( \vw-\vkx \right)^2 + \vky^2 \qquad \to \qquad \left(\frac{\va}{\vw}\right)^2 = \left( 1-f \right)^2 + \lambda^2\\ \frac{\va}{\vw} & = \left( 1-f \right) \sqrt{1+E^2} \end{aligned}\)

Aerodynamic force
\[\Fa = \frac{1}{2}\rho S \CR \vaexp{2} = \frac{1}{2}\rho S \CL \sqrt{1+\frac{1}{E^2}} \left(\frac{\va}{\vw}\right)^2 \vwexp{2}\]

Non-dimensional tether force
\[\frac{\Ft}{qS} = \CL \sqrt{1+\frac{1}{E^2}} \left( 1-f \right)^2 \left( 1+E^2 \right), \quad \text{with} \qquad q=\frac{1}{2}\rho\vwexp{2}\]

Power harvesting factor
\[\zeta = \frac{P}{\Pw S} = C_L \sqrt{1+\frac{1}{E^2}} f \left( 1-f \right)^2 \left( 1+E^2 \right), \quad \text{with} \qquad \Pw = \frac{1}{2}\rho\vwexp{3}\]

Optimal reel-out speed

Maximize power harvesting factor by extereme value analysis
\(f \left( 1-f \right)^2\)

Optimal reeling factor
\[\fopt=\frac{1}{3}\]

Maximum harvesting factor
\[\zetaopt = \frac{4}{27} C_L \sqrt{1+\frac{1}{E^2}}\left( 1+E^2 \right)\]

Maximum harvesting factor for high-performance kites
\[\lim_{E\to\infty} \zetaopt = \frac{4}{27} C_LE^2\]

Maximum reel-out factor?

  • At \(f=1\) the apparent wind speed vanishes and the kite can not produce any lift
  • But what happens for \(f>1\)?
  • Practical application: step towing the kite.

Crosswind kite with mass

Radial flight

Massless radial kite

Reeling factor \(\to\) degree of freedom
\[f = \frac{\vk}{\vw}\]

Apparent wind velocity
\[\vva = \vvw - \vvk\]

Decomposition of kite velocity
\[\vvk = \vec{b} + \vec{c}\]
\[\vva = \vvw - \vec{b} - \vec{c}\] \[\vvw = \vva + \vec{c} + \vec{b}\] \[\vw^2 = \left( \va - c \right)^2 + b^2\quad \text{(positive vector magnitudes!)}\] \[\frac{\va}{\vw} = \sqrt{1-\left(\frac{b}{\vw}\right)^2} + \frac{c}{\vw}\]

Displayed is the case for reel in with \(f<0\)







Massless radial kite

Geometric similarity
\[\frac{b}{\vk} = \frac{L}{\Fa} = \frac{1}{\sqrt{1+\frac{1}{E^2}}}\] \[\frac{c}{\vk} = \frac{D}{\Fa} = \frac{1}{\sqrt{1+E^2}}\]

Normalized to the wind speed
\[\frac{b}{\vw} = -\frac{f}{\sqrt{1+\frac{1}{E^2}}}\] \[\frac{c}{\vw} = -\frac{f}{\sqrt{1+E^2}}\]

Minus signs aacount for negative value of \(f\)

Displayed is the case for reel in with \(f<0\)

Massless radial kite

Apparent wind speed
\[\begin{align} \frac{\va}{\vw} & = \sqrt{1 - \frac{f^2}{1 + \frac{1}{E^2}}} - \frac{f}{\sqrt{1 + E^2}}, \\ & = \frac{\sqrt{1 + E^2\left( 1 - f^2 \right)} - f}{\sqrt{1 + E^2}} \end{align}\]

Non-dimensional tether force
\[\frac{\Ft}{qS} = \CL \frac{\left[\sqrt{1+E^2(1-f^2)}-f\right]^2}{E\sqrt{1+E^2}}\]

Power harvesting factor
\[\zeta = \CL \frac{f\left[\sqrt{1+E^2(1-f^2)}-f\right]^2}{E\sqrt{1+E^2}}\]

Displayed is the case for reel in with \(f<0\)

Massless radial kite

Elevation angle \(\to\) not a degree of freedom
\[\cos\beta = \frac{\sqrt{1+E^2(1-f^2)}+fE^2}{1+E^2}\]


Homework #1: Derive this expression.


Hint:

  • Formulate two different expressions for the apparent wind speed, one of them containing \(\cos\beta\).
  • Eliminate the apparent wind speed by equating those equations.
  • Dolve for \(\cos\beta\).

Massless radial kite

Minimum reeling factor
\[f_{\rm min}=-\sqrt{1+\frac{1}{E^2}}\]


Homework #2:
Derive this expression.


Hint:

  • Use the fact that the radicant in the expression for \(\cos\beta\) has to be greater or equal to zero.

Loyd’s theory - comparison

awesco.eu/awe-explained/

How to use these analytic models?

The wind speed \(\vw\) describes the available energy resource.
The lift-to-drag ratio \(E\) characterizes the specific kite design.

For the ideal crosswind kite prescribe

the tether reeling speed \(\vt\) to calculate the achievable kite crosswind speed \(\vkx\), or
the kite crosswind speed \(\vkx\) to calculate the required tether reeling speed \(\vt\).

For the non-maneuvering kite prescribe

the tether reeling speed \(\vt\) to calculate the achievable elevation angle \(\beta\), or
the elevation angle \(\beta\) to calculate the required tether reeling speed \(\vt\).

References

Anderson, J.D.: Fundamentals of aerodynamics. McGraw Hill LLC (2016)
Cayon, O., Gaunaa, M., Schmehl, R.: Fast aero-structural model of a leading-edge inflatable kite. Energies. 16, 3061 (2023). https://doi.org/10.3390/en16073061
Diehl, M.: Airborne wind energy: Basic concepts and physical foundations. In: Ahrens, U., Diehl, M., and Schmehl, R. (eds.) Airborne wind energy. pp. 3–22. Springer, Berlin Heidelberg (2013)
Friedl, F.: Fault-tolerant design of a pumping kite power flight control system, http://resolver.tudelft.nl/uuid:e704e8aa-2371-437b-8de9-80b3b7067241, (2015)
Joshi, R., Schmehl, R., Kruijff, M.: Power curve modelling and scaling of fixed-wing ground-generation airborne wind energy systems. Wind Energy Science. 9, 2195–2215 (2024). https://doi.org/10.5194/wes-9-2195-2024
Loyd, M.: Crosswind kite power. Journal of Energy. 4, 106–111 (1980). https://doi.org/10.2514/3.48021
Poland, J.A.W., van Spronsen, J.M., Gaunaa, M., Schmehl, R.: Wind tunnel load measurements of a leading-edge inflatable kite rigid scale model. Wind Energy Science Discussions. 2025, 1–33 (2025). https://doi.org/10.5194/wes-2025-77
Viré, A., Lebesque, G., Folkersma, M., Schmehl, R.: Effect of chordwise struts and misaligned flow on the aerodynamic performance of a leading-edge inflatable wing. Energies. 15, 1450 (2022). https://doi.org/10.3390/en15041450

Questions?





kitepower.tudelft.nl

// reveal.js plugins