Airborne Wind Energy

Physics of tethered flight

Roland Schmehl

27 September 2024

CC BY 4.0

Outline

Max Dereta

Learning objectives

  • Derive a basic theory of tethered flight and energy harvesting with kites
  • Identify all relevant problem parameters
  • Introduce a consistent set of non-dimensional numbers
  • Illustrate idealized flight scenarios practical examples

Relevant literature sources are Loyd (1980) and Diehl (2013).

Basics

Ni Yan / AWESCO doctoral training network

Terminology

  • Velocity is a vector property.
  • Speed is a scalar property, the magnitude
    of the velocity vector.
  • A kite can be of fixed-wing of soft-wing type.


Mathematical notation

  • Scalars are set in italic: \(a\), \(b\), \(\rho\), \(\phi\)
  • In digital resources, vectors are set in bold roman: \(\vec{v}\), \(\vec{L}\), \(\vec{D}\)
  • In handwritten resources, vectors are overset with an arrow: \(\overset{→}{v}\), \(\overset{→}{L}\), \(\overset{→}{D}\)
  • Units are set in roman: \(\rm m\), \(\rm kg\)
  • Mathematical functions are set in roman: \(\sin\), \(\cos\), \(\max\)
  • Product of scalars: \(a b\)
  • Scalar product of vectors: \(\vec{v}\cdot\vec{v} = v^2\)
  • Cross product of vectors: \(\vec{v} = \boldsymbol\omega\times\vec{r}\)
  • Cartesian unit vectors

Environmental properties

Ambient wind velocity
\[\vvw, \quad {\rm m/s}\]

Air density
\[\rho, \quad {\rm kg/m}^3\]

Dynamic wind pressure
\[q = \frac{1}{2}\rho\vw^2, \quad {\rm N/m}^2\]

Wind power density
\[\Pw = \frac{1}{2}\rho\vw^3, \quad {\rm W/m}^2\]

Gravitational acceleration
\[\vec{g}, \quad {\rm m/s}^2\]

Kite geometry

More information Oehler and Schmehl (2019)

Flat wing surface area (unrolled)

Wing planform area (projected)
\[S, \quad {\rm m}^2\]

Wing span
\[b, \quad {\rm m}\]

Wing maximum chord
\[\cmax, \quad {\rm m}\]

Wing side area (projected)

Airfoil geometry

Kite mass
\[\mk, \quad {\rm kg}\]

Kite kinematics

Friedl (2015)

Kite kinematics

Kite velocity
\[\vvk\]

Apparent wind velocity
\[\vva = \vvw - \vvk\]

Resultant aerodynamic force
\[\Fa = \frac{1}{2}\rho\CR S \va^2\]

Relative flow

Aerodynamic forces

Resultant aerodynamic force can be decomposed into lift and drag force
\[\vFa = \vec{L} + \vec{D}\]

Drag force component is defined as
\[\vec{D} \parallel \vva\]

Lift force component is defined as
\[\vec{L} \perp \vva\]

Aerodynamic side force \(\vFas \sim \betas\) neglected for performance modeling.

\[\begin{align} \vec{L} & = \frac{1}{2}\rho\CL S \va^2\\ \vec{D} & = \frac{1}{2}\rho\CD S \va^2 \end{align}\]

Determining aerodynamic coefficients

Wind tunnel measurement

  • Rigid scale model with 1.28 m span
  • Unloaded design shape
  • Variable angle of attack & side slip angle
  • Reynolds number lower than real kite

Computational Fluid Dynamics

  • CAD model before meshing
  • Unloaded design shape
  • Variable angle of attack & side slip angle
  • Uncertainty about captured physics

Jelle Poland

Aerodynamic characteristics

  • CFD: OpenFOAM RANS simulation
  • VSM: Vortex Step Method of Cayon et al. (2023)
  • WT: Wind tunnel measurements (Open Jet Facility of TU Delft)

Jelle Poland

Aerodynamic lift devices

Airfoil

  • Full range of \(L/D\)
  • \(D\) can be minimised
  • Control by angle of attack

Rotating cylinder

  • Limited \(L/D\)
  • \(D\) can not be modified
  • Control by angular velocity

Tethered flight

  • Aerodynamic forces
  • Aerodynamic lift and drag

Approach

Start from the minimal setup, the untethered wing.
Step by step add physical components,
add motion components,
and compute forces acting on the system.

Analytic modelling framework
\[\zeta = \frac{P}{\Pw S} = \CR\left[1+\left(\frac{L}{D}\right)^2\right] f \left(\cos\beta\cos\phi - f\right)^2\]




Steady gliding flight

TobiWanKenobi/Wikipedia

Stagnant wind

Kite velocity
\[\vvk = \vvkx + \vvkz = \const\]

Glide ratio
\[E = \frac{\vkx}{\vkz} = \frac{1}{\tan\gamma} \quad \to \quad \text{glide angle } \gamma\]

Apparent wind velocity
\[\vva = \vvw -\vvk = -\vvk, \quad \text{with} \qquad \vw=0\]

Steady force equilibrium
\[m\vg + \vFa = 0\]

Geometric similarity of kinematic and force triangles because \(\vvkz \parallel \vFa\) and \(\vvk \parallel \vec{D}\)
\[E = \frac{\vkx}{\vkz} = \frac{L}{D}\]





Geometric similarity explained

If two parallel lines cut through a pair of intersecting straight lines, the generated triangles are geometrically similar (below a variant with right-angled triangles).

Uniform and constant wind

Effect of additional wind velocity \(\vw > 0\)

If wing flies against wind, glide angle \(\gamma\) gets steeper

Apparent wind velocity
\[\begin{align} \vva & = \vvw -\vvk\\ \vax & = \vw -\vkx \\ \vaz & = -\vkz \end{align}\]

Geometric similarity of kinematic and force triangles
\[E = \frac{\vax}{\vaz} = \frac{L}{D}\]

Application in AWE:
limiting case of retraction in pumping cycle with
vanishing tether tension.

Tethered static flight

Library of Congress / NPS.gov

Dan Tate, left, and Wilbur Wright, right, flying
the 1902 glider as a kite, on 19 September 1902.

Massless kite

Kite velocity
\[\vvk = 0\]

Apparent wind velocity
\[\vva = \vvw - \vvk = \vvw\]

Static force equilibrium
\[\vFt + \vFa = 0\]

\[\Ft = \Fa = \sqrt{L^2 + D^2}\]

\[\begin{align} \tan\beta & = \frac{L}{D} \\ \beta & = \arctan\frac{L}{D} \end{align}\]

\[\lim_{\frac{L}{D}\to\infty} \beta = \frac{\pi}{2}\]




Kite with mass

Static force equilibrium
\[\vFt + \vFa + m\vg = 0\]

\[\Ft = \sqrt{\left(L-mg\right)^2 + D^2}\]

\[\begin{align} \tan\beta & = \frac{L-mg}{D} \\ & = \frac{L}{D}\left(1-\frac{mg}{L}\right)\\ & = \frac{L}{D}\left(1-\frac{1}{\mu}\right), \quad \text{with} \qquad \mu=\frac{\rho \CL S \vwexp2}{2 m g} \end{align}\]

Limiting cases
\[\begin{align} mg=0\,~ (\mu\to\infty) & \quad \to \quad \beta=\arctan{\frac{L}{D}}\\ mg=L ~ (\mu=1)\quad & \quad \to \quad \beta=0 \end{align}\]

Tether sag

Loyd’s theory

Ideal crosswind kite

Ideal crosswind kite - theory

Reeling factor \(\to\) degree of freedom
\[f = \frac{\vkx}{\vw}\]

Tangential velocity factor
\[\lambda = \frac{\vky}{\vw}\]

Apparent wind velocity
\(\begin{aligned} \vva & = \vvw - \vvk \\ & = \left( \vw - \vkx \right)\vex + \left( - \vky \right)\vey \end{aligned}\)

Geometric similarity of velocity and force triangles
\[\frac{L}{D} = \frac{\vky}{\vw-\vkx} \qquad \to \qquad \frac{L}{D}\left( \vw - \vkx \right) = \vky \\ \lambda = \frac{L}{D} \left( 1-f \right) = E \left( 1-f \right) \quad \to \quad \text{not a degree of freedom!}\]






Ideal crosswind kite - theory

Apparent wind velocity
\(\begin{aligned} \vaexp{2} & = \left( \vw-\vkx \right)^2 + \vky^2 \qquad \to \qquad \left(\frac{\va}{\vw}\right)^2 = \left( 1-f \right)^2 + \lambda^2\\ \frac{\va}{\vw} & = \left( 1-f \right) \sqrt{1+E^2} \end{aligned}\)

Aerodynamic force
\[\Fa = \frac{1}{2}\rho S \CR \vaexp{2} = \frac{1}{2}\rho S \CL \sqrt{1+\frac{1}{E^2}} \left(\frac{\va}{\vw}\right)^2 \vwexp{2}\]

Non-dimensional tether force
\[\frac{\Ft}{qS} = \CL \sqrt{1+\frac{1}{E^2}} \left( 1-f \right)^2 \left( 1+E^2 \right), \quad \text{with} \qquad q=\frac{1}{2}\rho\vwexp{2}\]

Power harvesting factor
\[\zeta = \frac{P}{\Pw S} = C_L \sqrt{1+\frac{1}{E^2}} f \left( 1-f \right)^2 \left( 1+E^2 \right), \quad \text{with} \qquad \Pw = \frac{1}{2}\rho\vwexp{3}\]

Ideal crosswind kite - optimal reel-out speed

Maximize by extereme value analysis
\(f \left( 1-f \right)^2\)

Optimal reeling factor
\[\fopt=\frac{1}{3}\]

Maximum harvesting factor
\[\zetaopt = \frac{4}{27} C_L \sqrt{1+\frac{1}{E^2}}\left( 1+E^2 \right)\]

Maximum harvesting factor for high-performance kites
\[\lim_{E\to\infty} \zetaopt = \frac{4}{27} C_LE^2\]

Non-maneuvering kite

Non-maneuvering kite - theory

Reeling factor \(\to\) degree of freedom
\[f = \frac{\vk}{\vw}\]

Apparent wind velocity
\[\vva = \vvw - \vvk\]

Decomposition of kite velocity
\[\vvk = \vec{b} + \vec{c}\]
\[\vva = \vvw - \vec{b} - \vec{c}\] \[\vvw = \vva + \vec{c} + \vec{b}\] \[\vw^2 = \left( \va - c \right)^2 + b^2\quad \text{(positive vector magnitudes!)}\] \[\frac{\va}{\vw} = \sqrt{1-\left(\frac{b}{\vw}\right)^2} + \frac{c}{\vw}\]

Displayed is the case for reel in with \(f<0\)







Non-maneuvering kite - theory

Geometric similarity
\[\frac{b}{\vk} = \frac{L}{\Fa} = \frac{1}{\sqrt{1+\frac{1}{E^2}}}\] \[\frac{c}{\vk} = \frac{D}{\Fa} = \frac{1}{\sqrt{1+E^2}}\]

Normalized to the wind speed
\[\frac{b}{\vw} = -\frac{f}{\sqrt{1+\frac{1}{E^2}}}\] \[\frac{c}{\vw} = -\frac{f}{\sqrt{1+E^2}}\]

Minus signs aacount for negative value of \(f\)

Displayed is the case for reel in with \(f<0\)

Non-maneuvering kite - theory

Apparent wind speed
\[\begin{align} \frac{\va}{\vw} & = \sqrt{1 - \frac{f^2}{1 + \frac{1}{E^2}}} - \frac{f}{\sqrt{1 + E^2}}, \\ & = \frac{\sqrt{1 + E^2\left( 1 - f^2 \right)} - f}{\sqrt{1 + E^2}} \end{align}\]

Non-dimensional tether force
\[\frac{\Ft}{qS} = \CL \frac{\left[\sqrt{1+E^2(1-f^2)}-f\right]^2}{E\sqrt{1+E^2}}\]

Power harvesting factor
\[\zeta = \CL \frac{f\left[\sqrt{1+E^2(1-f^2)}-f\right]^2}{E\sqrt{1+E^2}}\]

Displayed is the case for reel in with \(f<0\)

Non-maneuvering kite - theory

Elevation angle \(\to\) not a degree of freedom
\[\cos\beta = \frac{\sqrt{1+E^2(1-f^2)}+fE^2}{1+E^2}\]

Derivation of minimum reeling factor \(f_{\rm min}\)

Displayed is the case for reel in with \(f<0\)

Loyd’s theory - comparison

awesco.eu/awe-explained/

How to use these analytic models?

The wind speed \(\vw\) describes the available energy resource.
The lift-to-drag ratio \(E\) characterizes the specific kite design.

For the ideal crosswind kite prescribe

the tether reeling speed \(\vt\) to calculate the achievable kite crosswind speed \(\vkx\), or
the kite crosswind speed \(\vkx\) to calculate the required tether reeling speed \(\vt\).

For the non-maneuvering kite prescribe

the tether reeling speed \(\vt\) to calculate the achievable elevation angle \(\beta\), or
the elevation angle \(\beta\) to calculate the required tether reeling speed \(\vt\).

References

Cayon, O., Gaunaa, M., Schmehl, R.: Fast aero-structural model of a leading-edge inflatable kite. Energies. 16, 3061 (2023). doi:10.3390/en16073061
Diehl, M.: Airborne wind energy: Basic concepts and physical foundations. In: Ahrens, U., Diehl, M., and Schmehl, R. (eds.) Airborne wind energy. pp. 3–22. Springer, Berlin Heidelberg (2013). doi:10.1007/978-3-642-39965-7_1
Friedl, F.: Fault-tolerant design of a pumping kite power flight control system. FH Joanneum, University of Applied Sciences, Graz, Austria (2015)
Loyd, M.: Crosswind kite power. Journal of Energy. 4, 106–111 (1980). doi:10.2514/3.48021
Oehler, J., Schmehl, R.: Aerodynamic characterization of a soft kite by in situ flow measurement. Wind Energy Science. 4, 1–21 (2019). doi:10.5194/wes-4-1-2019

Questions?





kitepower.tudelft.nl

// reveal.js plugins