Roland Schmehl
26 September 2025
Relevant literature sources are Loyd (1980) and Diehl (2013).
Ambient wind velocity
\[\vvw, \quad {\rm m/s}\]
Air density
\[\rho, \quad {\rm kg/m}^3\]
Dynamic wind pressure
\[q = \frac{1}{2}\rho\vw^2, \quad {\rm
N/m}^2\]
Wind power density
\[\Pw = \frac{1}{2}\rho\vw^3, \quad {\rm
W/m}^2\]
Gravitational acceleration
\[\vec{g}, \quad {\rm m/s}^2\]
Flat wing surface area (unrolled)
Wing planform area (projected)
\[S, \quad {\rm m}^2\]
Wing span
\[b, \quad {\rm m}\]
Wing side area (projected)
Wing maximum chord
\[\cmax, \quad {\rm m}\]
Airfoil geometry
Kite mass¹
\[\mk, \quad {\rm kg}\]
1 Often also just denoted as \(m\), without subscript.
Example: TU Delft V3 kite
Friedl (2015)
Kite velocity
\[\vvk\]
Apparent wind velocity
\[\vva = \vvw - \vvk\]
Resultant aerodynamic force
\[\Fa = \frac{1}{2}\rho\CR S \vaexp{2}, \quad
\text{with} \quad \vaexp{2} = \vva\cdot\vva\]
Kite velocity
\[\vvk\]
Apparent wind velocity
\[\vva = \vvw - \vvk = \vvw + (-
\vvk)\]
Poland et al. (2025)
Resultant aerodynamic force can be decomposed into lift and drag
force
\[\vFa = \vec{L} + \vec{D}\]
Drag force component is defined as
\[\vec{D} \parallel \vva\]
Lift force component is defined as
\[\vec{L} \perp \vva\]
Aerodynamic side force \(\vFas \sim \betas\) neglected for performance modeling.
\[\begin{align} \vec{L} & = \frac{1}{2}\rho\CL S \vaexp{2}\\ \vec{D} & = \frac{1}{2}\rho\CD S \vaexp{2} \end{align}\]

Wind tunnel measurement

Computational Fluid Dynamics
Airfoil
Rotating cylinder
Start from the minimal
setup, the untethered wing.
Step by step add physical
components,
add motion components,
and compute forces acting on the system.
Analytic
modelling framework
\[\zeta = \frac{P}{\Pw S} =
\CR\left[1+\left(\frac{L}{D}\right)^2\right] f \left(\cos\beta\cos\phi -
f\right)^2\]
TobiWanKenobi/Wikipedia
Kite velocity
\[\vvk = \vvkx + \vvkz = \const\]
Glide ratio
\[E = \frac{\vkx}{\vkz} =
\frac{1}{\tan\gamma} \quad ⤳ \quad \text{glide angle }
\gamma\]
Apparent wind
velocity
\[\vva = \vvw -\vvk = -\vvk, \quad
\text{with} \qquad \vw=0\]
Steady force
equilibrium
\[m\vg + \vFa = 0\]
Geometric similarity
of kinematic and force triangles because \(\vvkz \parallel \vFa\) and \(\vvk \parallel \vec{D}\)
\[E = \frac{\vkx}{\vkz} =
\frac{L}{D}\]
Same shape but different scale, in fact, different units (N vs m/s).
Effect of additional wind velocity \(\vw > 0\)
If wing flies against wind, glide angle \(\gamma\) gets steeper
Apparent wind
velocity
\[\begin{align}
\vva & = \vvw -\vvk\\
\vax & = \vw -\vkx \\
\vaz & = -\vkz
\end{align}\]
Geometric similarity
of kinematic and force triangles
\[E = \frac{\vax}{\vaz} =
\frac{L}{D}\]
Application in
AWE:
limiting case of retraction in pumping cycle with
vanishing tether tension.
Library of Congress / NPS.gov
Dan Tate, left, and Wilbur Wright, right, flying
the 1902 glider as a kite, on 19 September 1902.
Kite velocity
\[\vvk = 0\]
Apparent wind
velocity
\[\vva = \vvw - \vvk =
\vvw\]
Static force
equilibrium
\[\vFt + \vFa = 0\]
\[\Ft = \Fa = \sqrt{L^2 + D^2}\]
\[\begin{align} \tan\beta & = \frac{L}{D} \\ \beta & = \arctan\frac{L}{D} \end{align}\]
\[\lim_{\frac{L}{D}⤳\infty} \beta = \frac{\pi}{2}\]
Static force equilibrium
\[\vFt + \vFa + m\vg = 0\]
\[\Ft = \sqrt{\left(L-mg\right)^2 + D^2}\]
\[\begin{align} \tan\beta & = \frac{L-mg}{D} \\ & = \frac{L}{D} \left[1-\frac{mg}{L}\right] \\ & = E\,\left[1-\frac{2gm}{\rho\CL S \vwexp2}\right] \end{align}\]
\[\begin{align} \phantom{\tan\beta} & = E\,\left[1-\frac{\color{red}{\frac{2g}{\rho\CL}\frac{m}{S}}}{\vwexp2}\right] \end{align}\]
But what is the physical meaning of \(\color{red}{\frac{2g}{\rho\CL}\frac{m}{S}}\)?
Generated lift just balances the effect of gravity:
\[\frac{1}{2}\rho\CL S
\vwexp2=mg\]
Equivalent to \(\beta = 0\) (horizontal tether).
Solving for \(\vw\) leads to static take-off wind
speed:
\[\vwsto =
\sqrt{\frac{2g}{\rho\CL}\frac{m}{S}}\]
Mass-to-area ratio \(m/S\) is an important scaling parameter affecting take-off limit
Definition identical to the stall speed \(\vstall\) of an aircraft (Anderson 2016).
Static force equilibrium
\[\vFt + \vFa + m\vg = 0\]
\[\Ft = \sqrt{\left(L-mg\right)^2 + D^2}\]
\[\begin{align} \tan\beta & = \frac{L-mg}{D} \\ & = \frac{L}{D} \left[1-\frac{mg}{L}\right] \\ & = E\,\left[1-\frac{2gm}{\rho\CL S \vwexp2}\right]\\ & = E\,\left[1-\frac{\color{red}{\frac{2g}{\rho\CL}\frac{m}{S}}}{\vwexp2}\right] \end{align}\]
\[\begin{align} \phantom{\tan\beta} & = E\,\left[1-\left(\frac{\color{red}{\vwsto}}{\vw}\right)^2\right], \quad \text{with} ~ \vwsto = \sqrt{\frac{2g}{\rho\CL}\frac{m}{S}} \end{align}\]
| Kite | \(S~\text{(m$^\text{2}$)}\) | \(m~\text{(kg)}\) | \(\CLmax~\text{(-)}\) | \(m/S~\text{(kg/m$^\text{2}$)}\) | \(\vwsto~\text{(m/s)}\) |
|---|---|---|---|---|---|
| Ampyx AP2 | 3 | 35 | 1.5 | 11.7 | 11.3 |
| Mozaero AP3 | 12 | 475 | 2.1 | 39.6 | 17.5 |
| Makani MX2 | 54 | 1850 | 2 | 34.3 | 16.7 |
| MegAWES | 150.45 | 6885 | 1.9 | 45.8 | 19.8 |
| TU Delft V3 | 19.75 | 22.8 | 0.88 | 1.15 | 4.6 |
| Kitepower V9 | 47 | 73 | 1.19 | 1.55 | 4.6 |
Source: Joshi et al. (2024)
TU Delft V3 kite flying on launch mast in 2012
Reeling factor ⤳
degree of freedom
\[f = \frac{\vkx}{\vw}\]
Tangential velocity
factor
\[\lambda =
\frac{\vky}{\vw}\]
Apparent wind
velocity
\(\begin{aligned}
\vva & = \vvw - \vvk \\
& = \left( \vw - \vkx \right)\vex + \left( - \vky
\right)\vey
\end{aligned}\)
Geometric similarity
of velocity and force triangles
\[\frac{L}{D} = \frac{\vky}{\vw-\vkx} \qquad
⤳ \qquad \frac{L}{D}\left( \vw - \vkx \right) = \vky \\
\lambda = \frac{L}{D} \left( 1-f \right) = E \left( 1-f \right)
\quad \quad \text{dependent variable, i.e. not a degree of
freedom!}\]
Apparent wind velocity
\(\begin{aligned}
\vaexp{2} & = \left( \vw-\vkx \right)^2 + \vky^2 \qquad ⤳ \qquad
\left(\frac{\va}{\vw}\right)^2 = \left( 1-f \right)^2 + \lambda^2\\
\frac{\va}{\vw} & = \left( 1-f \right) \sqrt{1+E^2}
\end{aligned}\)
Aerodynamic
force
\[\Fa = \frac{1}{2}\rho S \CR \vaexp{2} =
\frac{1}{2}\rho S \CL \sqrt{1+\frac{1}{E^2}}
\left(\frac{\va}{\vw}\right)^2 \vwexp{2}\]
Non-dimensional tether
force
\[\frac{\Ft}{qS} = \CL \sqrt{1+\frac{1}{E^2}}
\left( 1-f \right)^2 \left( 1+E^2 \right), \quad \text{with} \qquad
q=\frac{1}{2}\rho\vwexp{2}\]
Power harvesting
factor
\[\zeta = \frac{P}{\Pw S} = C_L
\sqrt{1+\frac{1}{E^2}} f \left( 1-f \right)^2 \left( 1+E^2 \right),
\quad \text{with} \qquad \Pw =
\frac{1}{2}\rho\vwexp{3}\]
Maximum power harvesting factor at maximum value of
\(f \left( 1-f \right)^2\)
This leads to a
condition for the first derivative
\[0 = \frac{\rm{d}}{\rm{df}} \left[ f \left(
1-f \right)^2 \right]\]
from which the optimal
reeling factor can be determined
\[\fopt=\frac{1}{3}\]
Optimal harvesting
factor using \(\fopt\)
\[\zetaopt = \frac{4}{27} C_L
\sqrt{1+\frac{1}{E^2}}\left( 1+E^2 \right)\]
The analytic formula for \(\zetaopt\) is based on a number of idealizations:
In reality, the achievable power harvesting factor is substantially lower than predicted by \(\zetaopt\).
Compare achievable power harvesting factor of the Kitepower Falcon:
Note: for \(\beta>0\) and/or \(\phi \ne 0\), \(\va\) vanishes for \(f<1\).
Static force equilibrium
\[\vFt + \vL + \vD + m\vg = 0\]
Horizontal lift force
component
\[|\vec{L} + m\vec{g}| = \sqrt{L^2 -
\left(mg\right)^2}\]
Geometric
similarity
\[\frac{\vky}{\vw-\vkx} = \frac{\sqrt{L^2 -
\left(mg\right)^2}}{D}\]
Tangential velocity
factor
\[\lambda = (1-f)E\sqrt{1 - \left(
\frac{mg}{L} \right)^2}\]
2025-04-10-resit
Apparent wind speed
\[\begin{align}
\left( \frac{\va}{\vw} \right)^2 & = (1-f)^2 + \lambda^2 \\
& = \left( 1 - f \right)^2 \left\{
1 + E^2\left[ 1-\left(\frac{mg}{L}\right)^2 \right] \right\} \\
& = \left( 1 - f \right)^2 \left\{
1 + E^2\left[
1-\left(\frac{\frac{2g}{\rho\CL}\frac{m}{S}}{\vaexp{2}}\right)^2 \right]
\right\}
\end{align}\]
Substitute
\[\color{red}{x} = \left( \frac{\va}{\vw}
\right)^2\quad ⤳\]
\[\color{red}{x} = \left( 1 - f \right)^2 \left\{ 1 + E^2\left[ 1-\left(\frac{\vwsto}{\vw}\right)^4 \frac{1}{\color{red}{x^2}}\right]\right\}\]
2025-04-10-resit
\[\color{red}{x} = \left( 1 - f \right)^2 \left\{ 1 + E^2 - E^2\left(\frac{\vwsto}{\vw}\right)^4 \frac{1}{\color{red}{x^2}}\right\}\]
Cubic equation, with missing linear term
\[\color{red}{x^3} - \left( 1 - f \right)^2
\left( 1 + E^2 \right) \color{red}{x^2} + \left( 1 - f \right)^2 E^2
\left(\frac{\vwsto}{\vw}\right)^4 = 0\]
Cubic equation in standard form
\[a x^3 + b x^2 + c x + d = 0, \quad
\text{with}\]
\[\begin{align} a & = 1, \\ b & = - \left( 1 - f \right)^2 \left( 1 + E^2 \right), \\ c & = 0, \\[-15px] d & = \left( 1 - f \right)^2 E^2 \left(\frac{\vwsto}{\vw}\right)^4. \\ \end{align}\]
2025-04-10-resit
A cubic equation has three roots. The nature of the three roots
depends on the value of the discriminant
\[
\begin{align*}
\Delta & = \ccancel{18 abcd} - 4b^3d + \ccancel{b^2c^2} -
\ccancel{4ac^3} - 27 a^2d^2 \fragment{0}{, \quad \text{because} \quad
\color{red}{c=0}} \\
& \fragment{1}{{} = 4(1-f)^8(1+E^2)^3 E^2 \left(
\frac{\vwsto}{\vw} \right)^4 - 27(1-f)^4 E^4 \left( \frac{\vwsto}{\vw}
\right)^8,} \\
& \fragment{2}{{} = (1-f)^4 E^2 \left( \frac{\vwsto}{\vw}
\right)^4 \left[ 4 (1-f)^4 (1+E^2)^3 - 27 E^2 \left( \frac{\vwsto}{\vw}
\right)^4 \right]}
\end{align*}
\]
For \(\Delta < 0\), the equation has one real root and two non-real complex conjugate roots.
For \(\Delta = 0\), the equation has one real root and two real repeated roots.
For \(\Delta > 0\), the equation has three distinct real roots.
Polynomial function and derivatives
\[\begin{alignat*}{2}
&p(x) &&= x^3 - \left( 1 - f \right)^2 \left( 1 + E^2
\right) x^2 + \left( 1 - f \right)^2 E^2
\left(\frac{\vwsto}{\vw}\right)^4, \\[-6mm]
&p'(x) &&= 3x^2 - 2\left( 1 - f \right)^2 \left( 1 +
E^2 \right) x, \\
&p''(x) &&= 6x - 2\left( 1 - f \right)^2 \left( 1 +
E^2 \right).
\end{alignat*}\]
⤳ Wind speed \(\vw\) affects vertical offset of polynomial
End behavior
\[\begin{alignat*}{3}
&x\to & -\infty &⤳ p(x)\to & ~ -\infty, \\
&x\to & \infty &⤳ p(x)\to & ~ \infty.
\end{alignat*}\]
Critical points: local
extrema \((p'=0)\)
\[\begin{alignat*}{4}
&x &&
=0 &&⤳
\text{local maximum} && (p'' < 0). \\
&\xc && =\frac{2}{3} \left( 1 - f \right)^2 \left( 1 + E^2
\right) &&⤳ \text{local minimum} \quad && (p''
> 0).
\end{alignat*}\]
Polynomials for the TU Delft V3 kite at \(f=0\).
\(x \ge \xmin = (1-f)^2.\)
This lower limit follows from the definition of the
non-dimensional apparent wind speed as
\[x = (1-f)^2+\lambda^2,\]
and the fact that the crosswind contribution is always positive, i.e. \(\lambda^2 \ge 0\).
\(x \le \xmax = \left( 1 - f \right)^2 \left( 1 + E^2 \right).\)
This upper limit is the apparent wind speed for Loyd’s ideal crosswind case, where \(m=0\).
Interesting is also the observation
\[\xc = \frac{2}{3} \xmax.\]
Polynomials for the TU Delft V3 kite at \(f=0\).
Polynomials for the TU Delft V3 kite at \(f=0\).
The discriminant is positive when
\[
\begin{align*}
4 (1-f)^4 (1+E^2)^3 & > 27 E^2 \left(
\frac{\vwsto}{\vw} \right)^4, & & \\
\fragment{0}{{}\left( \frac{\vw}{\vwsto} \right)^4} &
\fragment{0}{{} > \frac{27 E^2}{4 (1-f)^4 (1+E^2)^3},} & & \\
\fragment{1}{{}\vw} &
\fragment{1}{{} > \sqrt[\Large 4]{\frac{27 E^2}{4(1+E^2)^3}}
\frac{\vwsto}{1-f},} & \\
\fragment{2}{{}\vw} &
\fragment{2}{{} > \frac{\vwc}{1-f}, \quad \text{with} \quad}
&
\fragment{2}{{} \vwc } & \fragment{2}{{} = \sqrt[\Large 4]{\frac{27
E^2}{4(1+E^2)^3}}\, \vwsto, \quad \text{and}} \\
& &
\fragment{2}{{} \vwsto} & \fragment{2}{{} =
\sqrt{\frac{2g}{\rho\CL}\frac{m}{S}}.}
\end{align*}
\]
But what is the physical meaning of \(\vwc\)?
Polynomial for \(f=0\) and physical parameters of the TU Delft V3 kite
Investigate the cubic polynomial for
three different wind speeds,
\(\vw=\) \(0.9\vwc\), \(\vwc\) and \(1.1\vwc\).
By definition \(x = \left( \frac{\va}{\vw} \right)^2 \ge
0\),
⤳ \(x<0\) unphysical.
For \(\vw<\vwc\) \((\Delta < 0)\),
⤳ none of the real roots in
physical range.
For \(\vw=\vwc\) \((\Delta = 0)\),
⤳ repeated real root.
For \(\vw>\vwc\) \((\Delta > 0)\).
⤳ two distinct real roots.
Only interested in the lower value.
Tangential velocity factor \(\lambda_\mathrm{max} = \lambda(m=0)= E\).
Considering a kite with a static take-off wind
speed
\[\vwsto =
\sqrt{\frac{2g}{\rho\CL}\frac{m}{S}},\]
the theoretical cut-in wind speed for crosswind
operation at \(\beta=\phi=0\) is given
by
\[\vwc = \sqrt[\Large 4]{\frac{27
E^2}{4(1+E^2)^3}}\, \vwsto.\]
Reeling factor ⤳
degree of freedom
\[f = \frac{\vk}{\vw}\]
Apparent wind
velocity
\[\vva = \vvw - \vvk\]
Decomposition of kite
velocity
\[\vvk = \vec{b} + \vec{c}\]
\[\vva = \vvw - \vec{b} - \vec{c}\]
\[\vvw = \vva + \vec{c} + \vec{b}\]
\[\vw^2 = \left( \va - c \right)^2 + b^2\quad
\text{(positive vector magnitudes!)}\] \[\frac{\va}{\vw} =
\sqrt{1-\left(\frac{b}{\vw}\right)^2} +
\frac{c}{\vw}\]
Displayed is the case for reel in with \(f<0\)
Geometric similarity
\[\frac{b}{\vk} = \frac{L}{\Fa} =
\frac{1}{\sqrt{1+\frac{1}{E^2}}}\] \[\frac{c}{\vk} = \frac{D}{\Fa} =
\frac{1}{\sqrt{1+E^2}}\]
Normalized to the wind speed
\[\frac{b}{\vw} =
-\frac{f}{\sqrt{1+\frac{1}{E^2}}}\] \[\frac{c}{\vw} =
-\frac{f}{\sqrt{1+E^2}}\]
Minus signs aacount for negative value of \(f\)
Displayed is the case for reel in with \(f<0\)
Apparent wind speed
\[\begin{align}
\frac{\va}{\vw} & = \sqrt{1 - \frac{f^2}{1 + \frac{1}{E^2}}} -
\frac{f}{\sqrt{1 + E^2}}, \\
& = \frac{\sqrt{1 + E^2\left( 1 - f^2 \right)} -
f}{\sqrt{1 + E^2}}
\end{align}\]
Non-dimensional tether force
\[\frac{\Ft}{qS} = \CL
\frac{\left[\sqrt{1+E^2(1-f^2)}-f\right]^2}{E\sqrt{1+E^2}}\]
Power harvesting factor
\[\zeta = \CL
\frac{f\left[\sqrt{1+E^2(1-f^2)}-f\right]^2}{E\sqrt{1+E^2}}\]
Displayed is the case for reel in with \(f<0\)
Elevation angle ⤳ not a degree of freedom
\[\cos\beta =
\frac{\sqrt{1+E^2(1-f^2)}+fE^2}{1+E^2}\]
Homework #1: Derive this expression.
Hint:
2022-04-06-resit 2(d)
Minimum reeling factor
\[f_{\rm
min}=-\sqrt{1+\frac{1}{E^2}}\]
Homework #2:
Derive this expression.
Hint:
2022-04-06-resit 2(f)
The wind speed \(\vw\) describes the available energy
resource.
The lift-to-drag ratio \(E\) characterizes the specific kite
design.
For the ideal crosswind kite prescribe
the tether reeling speed \(\vt\) to calculate the achievable kite
crosswind speed \(\vkx\),
or
the kite crosswind speed \(\vkx\) to calculate the required tether
reeling speed \(\vt\).
For the non-maneuvering kite prescribe
the tether reeling speed \(\vt\) to calculate the achievable elevation
angle \(\beta\), or
the elevation angle \(\beta\) to calculate the required tether
reeling speed \(\vt\).